313. The Structure of Caracurine-II: X-Ray Analysis of Caracurine-II Dimethiodide

By A. T. MCPHAIL and G. A. SIM

The alkaloid caracurine-II, isolated from Strychnos toxifera, has been shown by an X-ray study of the dimethiodide to have structure (III). The crystals of the dimethiodide are orthorhombic, space group $P2_12_12_1$, with four molecules of $C_{40}H_{44}I_2N_4O_2$ in the unit cell of dimensions a = 18.59, b = 27.44, c = 7.52 Å. Phase determination was based initially on the iodine atoms and Fourier methods were employed for the assignment of co-ordinates to the carbon, nitrogen, and oxygen atoms.

THE bark of Strychnos toxifera from British Guiana is the source of a number of quaternary alkaloids. In 1949 King reported the isolation of toxiferines I-XII,¹ while at a later date Battersby and his colleagues ² re-examined the bark and showed that toxiferine-IX is identical with the dimethochloride of the tertiary base caracurine-II which Asmis, Schmid, and Karrer had isolated from Venezuelan Strychnos toxifera.³

It was clear that caracurine-II is closely related to a number of other curare alkaloids, for treatment of caracurine-V (I) with aqueous acid in the presence of oxygen yields caracurine-VII and caracurine-II,⁴ while similar treatment of toxiferine-I^{5,6} (II) affords hemitoxiferine-I and caracurine-II dimethochloride.⁶

At the suggestion of Professor A. R. Battersby we undertook an X-ray investigation of the structure of caracurine-II while chemical and spectroscopic studies continued at Bristol and Zurich. Initially we examined crystals of the dimethochloride and dimethobromide which are isomorphous and monoclinic: good crystals of the chloride were obtained but the bromide proved much less suitable and though we were able to assign co-ordinates to the halogen ions the limited intensity data available frustrated our attempts to solve the crystal structure.

We next obtained crystals of the dimethiodide which proved not to be isomorphous with the chloride and bromide, but to belong to the orthorhombic system. The crystals, like those of the bromide, gave only a limited number of reflexions and the crystal-structure determination was effected with a total of $1285 | F_o |$ values. The phase-determining heavy-atom method 7 was employed and a number of three-dimensional electron-density

¹ King, J., 1949, 3263.

2 Battersby, Binks, Hodson, and Yeowell, J., 1960, 1848.

3

Asmis, Schmid, and Karrer, Helv. Chim. Acta, 1954, 37, 1983. Asmis, Bächli, Schmid, and Karrer, Helv. Chim. Acta, 1954, 37, 1993.

⁵ Bernauer, Berlage, von Philipsborn, Schmid, and Karrer, *Helv. Chim. Acta*, 1958, **41**, 2293; Battersby and Hodson, *Proc. Chem. Soc.*, 1958, 287; Boekelheide, Ceder, Crabb, Kawazoe, and Knowles, *Tetrahedron Letters*, 1960, No. 26, 1; Arnold, Hesse, Hiltebrand, Melera, von Philipsborn, Schmid, and Karrer, *Helv. Chim. Acta*, 1961, **44**, 620.

 ⁶ Battersby and Hodson, J., 1960, 786.
 ⁷ Robertson and Woodward, J., 1937, 219; 1940, 36; Sim, in "Computing Methods and the Phase Problem in X-ray Crystal Analysis," ed. Pepinsky, Robertson, and Speakman, Pergamon Press, Oxford, 1961, p. 227.

distributions were evaluated. The course of the analysis is described in the Experimental section.

Our final results establish the constitution and relative stereochemistry of caracurine-II dimethiodide to be as in (III). The studies at Bristol and Zurich reached identical conclusions and preliminary reports of the independent investigations have been published together.⁸

	Atomic co-ordinates and temperature factors													
	x a	у Ь	z c	B		x/a	y b	z c	B					
N(1)	0.3496	0.3632	0.2751	3.1	N(1')	0.4765	0.2736	0.2479	3.7					
C(2)	0.4265	0.3765	0.3116	3 ∙0	C(2')	0.4175	0.2669	0.1268	3.4					
C(3)	0.4817	0.4650	0.2202	4.1	C(3′)	0.4466	0.2319	-0.1796	3.3					
N(4)	0.5489	0.4694	0.2702	3.6	N(4')	0.3839	0.2254	-0.3014	4.2					
C(5)	0.5474	0.4488	0.4529	$4 \cdot 2$	C(5′)	0.3281	0.2104	-0.1801	4.7					
C(6)	0.4856	0.4416	0.5220	3.9	C(6')	0.3589	0.1890	-0.0026	$3 \cdot 2$					
C(7)	0.4291	0.4293	0.3498	$3 \cdot 1$	C(7′)	0.4302	0.2312	0.0175	3.8					
C(8)	0.3518	0.4380	0.3842	$3 \cdot 4$	C(8′)	0.4872	0.1979	0.1150	2.5					
C(9)	0.3138	0.4834	0.4519	4.6	C(9')	0.5149	0.1518	0.1082	5.8					
C(10)	0.2425	0.4813	0.4592	3.8	C(10')	0.5698	0.1396	0.2364	3.8					
C(11)	0.2068	0.4411	0.4158	5.8	C(11')	0.5822	0.1712	0.3612	3.0					
C(12)	0.2366	0.3952	0.3202	5.5	C(12')	0.5638	0.2135	0.3689	3.3					
C(13)	0.3125	0.3983	0.3411	4.5	C(13')	0.5035	0.2274	0.2497	4 ·9					
C(14)	0.4637	0.4440	0.0281	4 ·6	C(14')	0.4777	0.2858	-0.2093	4 ·3					
C(15)	0.5148	0.3914	0.0338	$2 \cdot 4$	C(15')	0.4183	0.3222	-0.1699	$2 \cdot 2$					
C(16)	0.4693	0.3203	0.1452	3.7	C(16')	0.4086	0.3172	0.0454	3.1					
C(17)	0.5215	0.3149	0.2067	3.7	C(17')	0.3452	0.3500	0.0823	$5 \cdot 4$					
C(18)	0.6302	0.3284	0.0855	4.3	C(18′)	0.2823	0.3771	-0.1714	$2 \cdot 9$					
C(19)	0.6434	0.3795	0.1589	4.5	C(19')	0.2967	0.3991	-0.2898	$5 \cdot 2$					
C(20)	0.5892	0.4011	0.1028	4 ·1	C(20')	0.3560	0.3066	-0.2646	3.7					
C(21)	0.6068	0.4571	0.1618	4.3	C(21')	0.3529	0.2713	-0.3870	3.4					
C(22)	0.5477	0.5249	0.2873	6.3	C(22')	0.3910	0.1826	-0.4271	3.7					
O(23)	0.5771	0.2966	0.0846	3.4	O(23')	0.3291	0.3878	-0.0320	4 ·4					
I(24)	0.5107	0.5633	-0.1980	†	I(24')	0.1849	0.1788	-0.6182	Ť					

 TABLE 1

 Atomic co-ordinates and temperature factors

† For the iodide ions anisotropic temperature factors were employed. These were of the form

 $T = 2^{-(b_{11}h^2 + b_{22}k^2 + b_{33}l^2 + b_{12}hk + b_{23}kl + b_{13}hl)}$

with pa	arameters						
. –		b_{11}	b_{22}	b ₂₃	b_{12}	b_{23}	b_{13}
I(24)		0.01089	0.00282	0.03170	-0.00022	0.00031	-0.00112
I(24')		0.00867	0.00502	0.03229	-0.00020	0.00073	0.00129

The final three-dimensional electron-density distribution is shown in Fig. 1 as superimposed contour sections drawn parallel to (001) and covering the region of one molecule; the corresponding atomic arrangement is explained in Fig. 2. The interatomic distances and valency angles calculated from the final atomic co-ordinates (see Table 1) are listed in Table 2. The standard deviations of the final atomic co-ordinates are about 0.008 Å for the iodide ions and 0.07 Å for the carbon nitrogen, and oxygen atoms; from these results the average estimated standard deviation (e.s.d.) of a carbon-carbon bond length is about 0.10 Å and the average e.s.d. of a valency angle about 5°.

Examination of the bond lengths, valency angles, non-bonded interactions, etc., shows that the molecule probably does not deviate from two-fold symmetry (C_2) in the crystal.

The average bond length in the benzene rings, 1.38 Å, and the average carbon-carbon single bond length, 1.54 Å, do not differ significantly from accepted values. The average sp^3 -carbon-nitrogen bond length of 1.46 Å is not different from the usual carbon-nitrogen single bond length of 1.47 Å,⁹ whereas the average sp^2 -carbon-nitrogen distance, as in other alkaloids, is considerably smaller. Because of the large standard deviations of the bond lengths, none of the differences between chemically equivalent bonds is significant.

⁸ Battersby, Hodson, Rao, and Yeowell, Proc. Chem. Soc., 1961, 412; Battersby, Yeowell, Jackman, Schroeder, Hesse, Hiltebrand, von Philipsborn, Schmid, and Karrer, Proc. Chem. Soc., 1961, 413; McPhail and Sim, *ibid.*, p. 416.
⁹ Sutton et al., "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem.

⁹ Sutton et al., "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Special Publ. No. 11, 1958.

with monourotem

In order to analyse the conformation of the molecule we calculated, by the method of Schomaker *et al.*,¹⁰ the mean planes through various sets of atoms; the deviations of the atoms from these planes are shown in Table 3. The cyclohexane rings E and E' do not adopt the normal chair conformation but are considerably flattened; atoms 2, 7, 3, 15, and 16 are closely coplanar while the average displacement of atom 14 from the plane of these atoms is 0.93 Å. The piperidine rings D and D' are in the boat conformation with atoms 3, 4, 15, and 20 coplanar and atoms 14 and 21 displaced, by average amounts of 0.57 and 0.72 Å, respectively, from the plane through 3, 4, 15, and 20. In rings C and C' atoms 3, 4, 5, and 7 are coplanar and the average displacement of atom 6 is 0.61 Å.

TABLE 2

Interatomic distances (Å) and angles

Intramolecular bonded distances

$\begin{array}{c} N(1)-C(\\ N(1)-C(\\ N(1)-C(\\ C(2)-C(')\\ C(3)-N(\\ C(3)-C(\\ C(3)-C(\\ N(4)-C(\\ N(4)-C(\\ N(4)-C(\\ C(5)-C(\\ C(5)-C(\\ C(7)-C(\\ C(8)-C(\\ C(8$	2) 13) 17') 7) 16) 44) 7) 14) 5) 21) 22) 6) 7) 8) 9)	1.50 1.28 1.50 1.48 1.65 1.31 1.69 1.59 1.59 1.49 1.53 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.52	$\begin{array}{c} C(8)-C(\\ C(9)-C(\\ C(10)-C\\ C(11)-C\\ C(12)-C\\ C(12)-C\\ C(15)-C\\ C(15)-C\\ C(15)-C\\ C(16)-C\\ C(18)-C\\ C(18)$	$\begin{array}{c} 13)\\ 10)\\ (11)\\ (12)\\ (13)\\ (15)\\ (16)\\ (20)\\ (17)\\ (23)\\ (19)\\ (23)\\ (20)\\ (21)\\ (21)\\ (16') \end{array}$	$\begin{array}{c} 1\cdot 35 \\ 1\cdot 33 \\ 1\cdot 33 \\ 1\cdot 42 \\ 1\cdot 43 \\ 1\cdot 73 \\ 1\cdot 64 \\ 1\cdot 50 \\ 1\cdot 45 \\ 1\cdot 45 \\ 1\cdot 45 \\ 1\cdot 45 \\ 1\cdot 53 \\ 1\cdot 53 \\ 1\cdot 24 \\ 1\cdot 63 \\ 1\cdot 63 \\ 1\cdot 63 \end{array}$	$\begin{array}{c} N(1')-\\ N(1')-\\ C(2')-\\ C(2')-\\ C(3')-\\ C(3')-\\ N(4')-\\ N(4')-\\ N(4')-\\ C(5')-\\ C(6')-\\ C(6')-\\ C(7')-\\ C(8')-\\ \end{array}$	C(2') C(13') C(17) C(7') C(16') N(4') C(7') C(14') C(5') C(21') C(22') C(6') C(7') C(6') C(7') C(8') C(9')	1.44 1.36 1.44 1.52 1.52 1.51 1.60 1.44 1.53 1.51 1.57 1.57 1.57 1.58 1.37	$\begin{array}{c} C(8')-C(\\ C(9')-C(\\ C(10')-C\\ C(11')-C\\ C(12')-C\\ C(12')-C\\ C(15')-C\\ C(15')-C\\$	13') 10') (11') (12') (13') (15') (16') (20') (21') (23') (22') (21')	1.33 1.44 1.30 1.21 1.49 1.52 1.63 1.42 1.51 1.38 1.40 1.39 1.43 1.34
			In	itram olec	ular non-b	onded	distance	s			
$\begin{array}{c} N(1) \cdots \\ C(2) \cdots \\ C(5) \cdots \\ C(5) \cdots \\ C(5) \cdots \\ C(5) \cdots \end{array}$	$\begin{array}{c} C(14)\\ C(15)\\ C(17)\\ N(1')\\ C(2')\\ C(18')\\ N(4)\\ C(5)\\ C(20)\\ C(2')\\ C(20)\\ C(16)\\ C(14)\\ C(15)\\ C(20)\\ \end{array}$	3.59 3.65 3.42 3.13 3.60 3.43 3.18 3.43 3.18 3.43 3.47 3.32 3.71 3.56 3.58 3.04	$\begin{array}{c} C(6) & \cdots \\ C(6) & \cdots \\ C(6) & \cdots \\ C(7) & \cdots \\ C(7) & \cdots \\ C(7) & \cdots \\ C(7) & \cdots \\ C(14) & \cdots \\ C(14) & \cdots \\ C(14) & \cdots \\ C(14) & \cdots \\ C(15) & \cdots \\ C(15) & \cdots \\ C(16) & \cdots \\ C(17) & \cdots \\ \end{array}$	C(14) C(16) C(21) C(22) C(22) C(22) C(17') O(23') C(17') O(23') C(17') O(23') C(17') C(21) C(17')	3.74 3.79 3.55 3.11 3.67 3.46 3.35 3.60 3.34 3.34 3.41 2.97 3.37 3.47 3.89 3.54	$\begin{array}{c} N(1') \cdot \\ N(1') \cdot \\ N(1') \cdot \\ N(1') \cdot \\ C(2') \cdot \\ C(2') \cdot \\ C(2') \cdot \\ C(2') \cdot \end{array}$	· · C(12 · · C(12 · · C(2) · · C(2) · · C(11 · · C(2) · · C(2) · · C(2)	L') 3.45 5') 3.58 7') 3.45 3.01 3) 3.45) 3.45) 3.45) 3.45) 3.47) 3.24 (') 3.34	$\begin{array}{c} N(4') \cdots \\ C(5') \cdots \\ C(5') \cdots \\ C(6') \cdots \\ C(6') \cdots \\ C(6') \cdots \\ C(6') \cdots \\ C(7') \cdots \\ C(7') \cdots \\ C(7') \cdots \\ C(7') \cdots \\ C(14') \cdots \\ C(14') \cdots \\ C(15') \cdots \\ C(15') \cdots \\ C(15') \cdots \end{array}$	C(16') C(14') C(15') C(20') C(16') C(21') C(22') C(22') C(22') C(22') C(17) O(23) C(22') C(17) O(23) O(23)	3.66 3.47 3.50 2.77 3.79 3.657 3.25 3.54 3.67 3.19 3.30 3.633 2.90 3.43 3.59
				-		. ,			C(16') • •	C(21′)	3.64
1(24') · · ·	C(18)-	3.66	$C(22) \cdots$	Intermol C(10')	ecular dist 3.84	ances (C(5') ·	<4 A) • • C(18	3.90	I(24)	· C(9')	3.96
$C(22) \cdots O(23') \cdots$	C(9') ₁₁ C(10) ₁₁₁	3·75 3·83	$I(24) \cdots I(24') \cdots$	$C(22')_{IV}$ $C(19)_{V}$	3·87 3·89	C(10)· C(11')	$\cdot \cdot C(10)$ $\cdot \cdot C(12)$) _{III} 3·91) _{VI} 3·95	C(9) · ·	$\cdot C(10)_{II}$	t 3·97
				Shorte	st $N^+ \cdots$	I– dista	ances				
N(4) N(4')	\cdots I(24) \cdots I(24)	4) 4′)	•••••	4 4	·42 ·58	N(4) N(4')	\cdots I(24 \cdots I(2	4)v11 4) _{IV}		4·81 4·86	
			The subs	cripts r	efer to th	ne follo	wing 1	positions	:		
	I - II III IV	$-\frac{1}{2} + x,$ 1 - x, $\frac{1}{2} - x,$ 1 - x,	$\frac{1}{2} - y, -\frac{1}{2} + y, -$	$\frac{1-z}{\frac{1}{2}-z}$			V VI VII	-+ + 2+	$\begin{array}{c} x, \frac{1}{2} - y, \\ x, \frac{1}{2} - y, \\ x, y, \end{array}$	$\begin{array}{c} -z\\ 1-z\\ 1+z \end{array}$	

¹⁰ Schomaker, Waser, Marsh, and Bergman, Acta Cryst., 1959, 12, 600.

TABLE 2 (Continued)

Interbond angles													
C(2)N(1)C(13)	105°	C(9)C(10)C(11)	122°	C(2')N(1')C(13')	100°	C(9')C(10')C(11')	117°						
C(2)N(1)C(17')	107	C(10)C(11)C(12)	127	C(2')N(1')C(17)	114	C(10')C(11')C(12')	129						
C(13)N(1)C(17')	122	C(11)C(12)C(13)	112	C(13')N(1')C(17)	121	C(11')C(12')C(13')	116						
N(1)C(2)C(7)	108	N(1)C(13)C(8)	114	N(1')C(2')C(7')	111	N(1')C(13')C(8')	118						
N(1)C(2)C(16)	102	N(1)C(13)C(12)	123	N(1')C(2')C(16')	103	N(1')C(13')C(12')	122						
C(7)C(2)C(16)	124	C(18)C(13)C(12)	123	C(7')C(2')C(16')	117	C(8')C(13')C(12')	118						
N(4)C(3)C(7)	116	C(3)C(14)C(15)	99	N(4')C(3')C(7')	116	C(3')C(14')C(15')	109						
N(4)C(3)C(14)	120	C(14)C(15)C(16)	108	N(4')C(3')C(14')	108	C(14')C(15')C(16')	103						
C(7)C(3)C(14)	101	C(14)C(15)C(20)	112	C(7')C(3')C(14')	103	C(14')C(15')C(20')	107						
C(3)N(4)C(5)	102	C(16)C(15)C(20)	115	C(3')N(4')C(5')	102	C(16')C(15')C(20')	112						
C(3)N(4)C(21)	123	C(2)C(16)C(15)	110	C(3')N(4')C(21')	117	C(2')C(16')C(15')	118						
C(3)N(4)C(22)	96	C(2)C(16)C(17)	112	C(3')N(4')C(22')	114	C(2')C(16')C(17')	124						
C(5)N(4)C(21)	118	C(2)C(16)C(16')	105	C(5')N(4')C(21')	103	C(2')C(16')C(16)	104						
C(5)N(4)C(22)	108	C(15)C(16)C(17)	106	C(5')N(4')C(22')	104	C(15')C(16')C(17')	103						
C(21)N(4)C(22)	108	C(15)C(16)C(16')	120	C(21')N(4')C(22')	114	C(15')C(16')C(16)	109						
N(4)C(5)C(6)	117	C(17)C(16)C(16')	104	N(4')C(5')C(6')	113	C(17')C(16')C(16)	97						
C(5)C(6)C(7)	106	C(16)C(17)O(23)	120	C(5')C(6')C(7')	96	C(16')C(17')O(23')	120						
C(2)C(7)C(3)	118	C(16)C(17)N(1')	102	C(2')C(7')C(3')	130	C(16')C(17')N(1)	106						
C(2)C(7)C(6)	111	O(23)C(17)N(1')	106	C(2')C(7')C(6')	114	O(23')C(17')N(1)	116						
C(2)C(7)C(8)	99	C(19)C(18)O(23)	137	C(2')C(7')C(8')	105	C(19')C(18')O(23')	121						
C(3)C(7)C(6)	88	C(18)C(19)C(20)	101	C(3')C(7')C(6')	94	C(18')C(19')C(20')	122						
C(3)C(7)C(8)	125	C(15)C(20)C(19)	141	C(3')C(7')C(8')	109	C(15')C(20')C(19')	120						
C(6)C(7)C(8)	116	C(15)C(20)C(21)	117	C(6')C(7')C(8')	100	C(15')C(20')C(21')	127						
C(7)C(8)C(9)	130	C(19)C(20)C(21)	101	C(7')C(8')C(9')	140	C(19')C(20')C(21')	109						
C(7)C(8)C(13)	111	N(4)C(21)C(20)	104	C(7')C(8')C(13')	99	N(4')C(21')C(20')	107						
C(9)C(8)C(13)	119	C(17)O(23)C(18)	107	C(9')C(8')C(13')	120	C(17')O(23')C(18')	116						
C(8)C(9)C(10)	116			C(8')C(9')C(10')	117								

TABLE 3

Deviations (Å) of the atoms from various planes

Atoms in der of mea	included ivation n plane	At	oms itted	Atoms i in deri of mea	ncluded vation n plane	At	oms itted
C(3) N(4) C(15) C(20)	0.00 0.00 0.00 0.00	C(14) C(21)	0·73 0·63	C(3') N(4') C(15') C(20')	-0.050.050.05-0.05	C(14') C(21')	0·71 0·50
C(2) C(7) C(3) C(15) C(16)	$\begin{array}{c} 0.01 \\ -0.02 \\ 0.01 \\ -0.01 \\ 0.00 \end{array}$	C(14)	1.02	C(2') C(7') C(3') C(15') C(16')	$\begin{array}{c} 0.02 \\ -0.05 \\ 0.03 \\ -0.02 \\ 0.02 \end{array}$	C(14′)	0.83
C(3) N(4) C(5) C(7)	$- \begin{array}{c} - 0.07 \\ 0.07 \\ - 0.04 \\ 0.04 \end{array}$	C(6)	-0.46	C(3') N(4') C(5') C(7')	$- \begin{array}{c} - 0.05 \\ 0.02 \\ - 0.02 \\ 0.05 \end{array}$	C(6′)	-0.76
N(1) C(2) C(16) C(16')	$- \begin{array}{c} 0.04 \\ 0.05 \\ - 0.05 \\ 0.03 \end{array}$	C(17′)	-0.66	N(1') C(2') C(16') C(16)	$- \begin{array}{c} - 0.01 \\ 0.01 \\ - 0.01 \\ 0.01 \end{array}$	C(17)	-0.51
C(15) C(18) C(19) C(20) C(21)	$- \begin{array}{c} - 0.03 \\ 0.06 \\ - 0.10 \\ 0.04 \\ 0.04 \end{array}$	C(16) C(17) O(23)	-1.31 -1.57 -0.45	C(15') C(18') C(19') C(20') C(21')	$\begin{array}{c} 0.05 \\ -0.06 \\ 0.11 \\ -0.11 \\ 0.00 \end{array}$	C(16′) C(17′) O(23′)	-1.28 -1.43 -0.33

rings G and G' exhibit a similar feature, atoms 1, 2, 16, and 16' being coplanar while the remaining atom, 17', is an average distance of 0.59 Å from the plane.

The non-planarity of the five-membered rings is reflected in the average valency angles in these rings. The average valency angle in rings C and C' is 105° and in rings G and G' is 104° , in excellent agreement with the values reported for, *e.g.*, hydroxy-L-proline (106°),¹¹

¹¹ Donohue and Trueblood, Acta Cryst., 1952, 5, 419.

clerodin bromolactone (106°),¹² and isoclovene hydrochloride (105°).¹³ When the fivemembered ring is fused to an aromatic ring or incorporates a double bond the average valency angle is usually slightly larger than in the above examples. Thus in echitamine bromide ¹⁴ the average valency angle in the five-membered ring fused to the benzene ring is 107° and in that not fused to the benzene ring 104°, while in bromogeigerin acetate ¹⁵ the average valency angle in the cyclopentenone ring is 107° and in the γ -lactone ring 105° . The value of 107° for the average valency angle in rings B and B' of caracurine-II dimethiodide conforms to this pattern. The average valency angle in the cyclohexane and piperidine rings, 112°, is slightly greater than tetrahedral. The average valency angle in the seven-membered rings F and F' is 117°.

The planes of the indoline ring systems are mutually inclined at an angle of 58°.

The conformation of a model of the caracurine-II dimethiodide molecule constructed with standard bond lengths and valency angles differs to some extent from the conformation of the actual molecule in the crystal. A list of some of the non-bonded distances in the model and in the crystal molecule is given in Table 4; comparison of these distances shows that the considerable strain inherent in the model molecule is relieved to some extent in the actual molecule by the rotation of both halves of the molecule away from each other about the 16-16' bond as axis. The non-bonded separations $14\cdots 14'$, $14\cdots 15'$,

TABLE 4

Comparison of intramolecular non-bonded separations (Å) in the crystal molecule and a model molecule

	Model mole- cule *	Crystal mole- cule *		Model mole- cule *	Crystal mole- cule *		Model mole- cule *	Crystal mole- cule *
$N(1) \cdot \cdot \cdot N(1')$	3.7	$3 \cdot 42$	$C(13) \cdots O(23')$	2.5	2.75	$C(15) \cdots C(15')$	2.8	3.03
$N(1) \cdots C(2')$	3.5	3.07	$C(14) \cdots C(15')$	2.6	3.61	$C(15) \cdots C(17')$	3.7	3.40
$C(3) \cdots C(15)$	3.7	4.90	$C(14) \cdots C(14')$	2.8	4.70	$C(15) \cdots O(23')$	4.3	3.53
$C(7) \cdots O(23')$	3.8	3.45	$C(14) \cdots C(16')$	3.0	3.42	$C(15) \cdots C(2')$	3.6	3.93
$C(11) \cdot O(23')$	2.8	3.31	$C(14) \cdots C(17')$	3.6	3.37	$C(16) \cdots O(23')$	3.5	3.12
C(12) · • C(18')	3.7	4 ·09	$C(14) \cdots O(23')$	3.8	2.94			

* The value listed for a separation $X \cdots Y$ is the average of the two separations, $X \cdots Y$ and $X' \cdots Y'$.

 $14 \cdots 16'$, for example, which are extremely short in the model are increased considerably in the actual molecule.

The distance between the two quaternary centres in the molecule is 8.5 Å, whereas in toxiferine-I and (+)-tubocurarine the corresponding separations have been estimated ¹⁶ at about 14 Å; this distinction is noteworthy in view of the high physiological activity of the latter alkaloids and the relatively low activity of caracurine-II dimethochloride.

The arrangement of the molecules in the unit cell as viewed along the c axis is shown in The shortest contact between a positively charged nitrogen atom and a negatively Fig. 3. charged iodide ion is 4.42 Å, close to the minimum N⁺···I⁻ distances in N-methylgelsemicine hydriodide (4.39 Å),¹⁷ morphine hydriodide (4.38 Å),¹⁸ and macusine-A iodide (4.52 Å).¹⁹ The closest carbon · · · iodine approaches, 3.66, 3.87, 3.89, and 3.96 Å, are similar to the values of 3.81 and 3.99 Å in (+)-de(oxymethylene)lycoctonine hydriodide monohydrate,²⁰ 3.81 Å in N-methylgelsemicine hydriodide,¹⁷ and 3.93 and 3.95 Å in macusine-A iodide.19

- ¹² Paul, Sim, Hamor, and Robertson, J., 1962, 4133.
- ¹³ Paul, Sim, Hamor, and Robertson, J., 1962, 4133.
 ¹³ Clunie and Robertson, J., 1961, 4382.
 ¹⁴ Hamilton, Hamor, Robertson, and Sim, J., 1962, 5061.
 ¹⁵ Hamilton, McPhail, and Sim, J., 1962, 708.
 ¹⁶ Battersby and Hodson, *Quart. Rev.*, 1960, **14**, 77.
 ¹⁷ Przybylska, *Acta Cryst.*, 1962, **15**, 301.
 ¹⁸ Mackay and Hodgkin, J., 1955, 3261.
 ¹⁹ McPhail, Robertson, and Sim, J., 1963, 1832.
 ²⁰ Przybylska, *Acta Cryst.*, 1961, **14**, 424.

The two iodide ions in the asymmetric crystal unit are in rather different environments and the co-ordination of each appears to account for the anisotropic thermal motion of these ions. The electrostatic attraction between I(24) and the three quaternary nitrogen atoms at distances of less than 5 Å is mainly in the y and z directions; accordingly, for I(24) the value of B_{11} , 10.4 Å², is distinctly greater than the values of B_{22} , 5.9 Å², and

FIG. 3. The crystal structure as viewed along the c axis

 B_{33} , 5.0 Å². For I(24') the ionic forces appear to be greatest in the z direction and least in the y direction; the anisotropic thermal parameters, $B_{11} = 8.3$ Å², $B_{22} = 10.5$ Å², and $B_{33} = 5.1$ Å², are in good agreement with this.

EXPERIMENTAL

Crystal Data.—Caracurine-II dimethiodide, $C_{40}H_{44}I_2O_2N_4$; *M*, 866.6. Orthorhombic, a = 18.59, b = 27.44, c = 7.52 Å, U = 3836 Å³, $D_m = 1.505$ g. cm.⁻³, Z = 4, $D_c = 1.502$ g. cm.⁻³, space group $P2_12_12_1 - D_2^4$. Absorption coefficient for X-rays ($\lambda = 1.542$ Å) $\mu = 134.5$ cm.⁻¹. Total number of electrons in the unit cell = F(000) = 1736.

Experimental Measurements.--Rotation, oscillation, and Weissenberg photographs were

taken with $\operatorname{Cu}-K_{\alpha}$ ($\lambda = 1.542$ Å) radiation; precession photographs were taken with Mo- K_{α} ($\lambda = 0.7107$ Å) radiation. The cell dimensions were determined from the rotation and precession photographs. For the intensity survey small crystals were employed, completely bathed in a uniform X-ray beam, and no correction for absorption was applied. The intensities were estimated visually from equi-inclination Weissenberg photographs of the hk0-hk5 layers; the multiple-film technique was employed. The usual correction factors (Lorentz, polarization, and rotation) were applied and 1285 independent structure amplitudes were derived. The exposures were such that the various layers were approximately on the same relative scale; the absolute scale of each layer was obtained at a later stage by correlation with the calculated structure amplitudes, $|F_e|$.

The crystal density was determined by flotation in aqueous zinc chloride.

Me N (IV)

Structure Analysis.—The initial co-ordinates of the iodide ions were obtained by interpreting the three-dimensional Patterson function; sections at $U = \frac{1}{2}$, $V = \frac{1}{2}$, and $W = \frac{1}{2}$ are shown in Fig. 4.

On the basis of the iodide ions alone a first set of structure amplitudes and phase angles was calculated; the value of R was 40%. The first Fourier synthesis was then evaluated with the measured values of the structure amplitudes and the phases calculated from the iodide ion positions. The three-dimensional electron-density distribution was displayed as contoured sections drawn on sheets of glass and stacked in a frame and was thoroughly examined for recognizable molecular features. We were able to allocate co-ordinates to thirtysix atoms defining the partial skeleton (IV) and at this stage it was

already clear that the alkaloid differed from caracurine-V and toxiferine-I by the presence of a carbon-carbon bond joining positions 16 and 16'.

FIG. 4. Sections through the three-dimensional Patterson function P(UVW), (a) at $U = \frac{1}{2}$, (b) at $V = \frac{1}{2}$, and (c) at $W = \frac{1}{2}$. Contour scale arbitrary

Measured and calculated values of the structure factors

h	k	l	F_{o}	F_{c}	α	h	k	l	F_{θ}	F_{c}	α	h	k	l.	F_{θ}	F_{c}	α	h	k	l	F٥	Fa	α
0	0	2	227 83	191 74	180 180			1	46 40	53	0			12	70 92	61 88	107 213			34	75 64	83 73	359 132
0	1	2	56	69	90	0	21	3	-46	23	90			3	64	66	261	2	10	5	57	53	100
		4	158	108	270	0	22	ĩ	24 39	43	180	1	15	2	40	39	164	2	10	ĩ	125	133	180
0	2	5	43 134.	<i>5</i> 9 •148	90 0	0	23 24	2	35 80	45 90	270 180			3 5	54 35	50 45	154 329			23	20	108	300 9€
		23	14 88	19 71	180 180	0	26	1	34 34	21 28	180 180	1	16	0 1	49 115	59 112	270 111			4	21 21	16 19	197 300
		4	99 54	104	0	ĭ	0	ī	20	21	270			2	49	49	350	5	11	Ó	19 64	4 53	180
0	3	1	97	88	270			3	117	79	270	1	17	í	35	24	299			2	22	41	73
		3	126	106	90			4 5	57	41 41	270			3	46	44	202			4	38	26	51
		4 5	11 102	15 90	90 270	1	1	1 2	49 181	65 175	349 354			4 5	19 41	24 44	219 354	2	12	5	49 76	-56 73	70 180
0	4	0	28 446	46 414	180 0			3	135	129	228 301	1	18	0	46 88	38 71	270 69			1	89 87	85 89	200 90
		2	29	22	180	h	2	5	114	79	24			23	42	35	74 221			3	66 38	79 34	31 83
~	~	5	55	68	180	Т	٤.	2	105	101	102		10	4	20	33	287	~	17	5	20	23	31
0	2	2	225	232	270			2 4	51	<i>55</i> 43	292	T	19	3	20	25	220	2	1)	ĩ	120	112	118
		4	61 61	37 51	90 90	ı	3	5 0	64 85	40 123	163 270	1	20	4 0	32 69	30 52	147 270			3	<i>3</i> 9 84	92 92	283
0	6	5 0	79 54	78 47	270 0			1	45 138	53 126	242 299			23	79 26	73 39	105 299			4 5	17 43	40 40	329 90
		1	167	100	0			3	54	55	177	1	21	ź	36	32	32 180	5	14	0 1	132	138 81	0 139
		3	68	69	180	ı	4	0	144	139	270	l	22	i	39	29	244			2	68	54	218
	_	5	42	45	0			5	280	144 197	$172 \\ 118$	2	0	0	242	329	0	_		5	30	10	200
0	7	1	1 <i>3</i> 9 37	157 58	270	1	4	3 4	95 28	82 27	20 20			1 2	107 179	106 206	270 180	2	15	1	23	27 12	190
		3 4	34 98	47 84	90 90	ı	5	5	76 207	77 204	346 90			3	18 168	18 123	270 0	2	15	23	59 18	49 18	109 22
0	8	5	35	32	90 190	-	-	i	94	72	138	2	1	5	41	35	90			4	71 25	71 35	237
Č	0	ĭ	69	70	180			3	23	28	61	2	1	ĩ	174	163	113	2	16	ó	36	37	207
		4	55 55	67	ŏ			4 5	125	5 8 159	239 239			3	96 49	49	243			5 T	39	47	229
0	9	5	36 38	46 64	90	1	6	0 1	80 148	64 113	270 258			4 5	181 83	154 71	311 286			ر 4	23	23	12
		23	2 <u>9</u> 112	10 117	90 270			2	118 105	108	39 123	2	2	0	77 237	105 231	0 30	2	17	0	22 33	23 38	0 190
0	10	4	63 87	68 63	90 180			á	30	17	329			2	252	216	112			23	54	53	84
Ŭ .	20	ĭ	17	37	0	ı	7	0	25	82	270			4	31	19	267			4	44	37	272
		3	34	62	· 0			5	116	109	8	2	3	0	24	17	180	2	18	ő	56	43	0
0	11	1	124	96 96	90			3	184 3 6	150 40	316 223			2	100	72	278 278			2	42	45	111
		23	71 105	100 89	270 270	1	8	5	*87 78	71 64	165 90			3 4	140 59	126 63	64 254			3	29 32	12 29	215 334
0	12	5	53 61	52 34	90 180	-	-	1	193	202	287	2	4	5	93 98	77	249	2	19	0	32 33	23 22	0 318
•		i	178	172	180			3	106	95	122	-	-1	ì	133	106	5	2	20	3	70	56	64
		3	39	26	ŏ	-		.4	20	34	175			3	155	141	169	٤	20	2	27	43	17
0	12	4 5	36	48	180	1	9	0 1	122 29	110 31	270 89			4 5	54 47	41 30	300			4	21	23	177
0	13	23	14 33	41 17	90 270			23	33 97	58 88	208 24	22	5 5	0 1	153 81	121 87	0 245	2	21	3 4	41 39	31 38	106
		4	33 62	24 76	270 90			4	22 79	48 88	85 207			23	98 142	74 158	101 126	2	22	1 4	42 21	25 · 16	311 12
0	14	0 1	53 75	23 64	180 180	l	10	ó	67	58	- 90 202			4	60 48	70 45	146 299	23	24 0	0 1	49 167	47 99	180 270
		2	79	89	180			2	107	99	308	2	6	ó	210	235	180	-	•	2.	150	107	180
		4	39	46	ő			4	20 32	48 41	81			2	81	72	48	3	1	ó	59	90	90
0	15	2	113	31 113	90 90	ı	11	5	31 69	36 107	10 90			و 4	110	101	128			2	105	-55 56	179
		3 4	40 57	62 60	270 270			1 2	32 79	27 68	96 163	2	7	5 0	42 114	32 128	97 180			3	156 45	145 52	158 159
0	16	2	100	124	0			3	55	62	26		•	1	81 76	70 70	72 273	3	2	5	64 268	54 339	342 270
0	17	Ă	19	5	180	l	12	õ	154	176	90			3	35	32	238		-	i	270	258	99
0	-1	3	19	15	90			ş	120	106	280	-	~	5	68	56	239			3	35	37	27
_		4 5	45 26	44 14	270			4 5	41 28	30 33	49 176	2	.8	l	132 83	144 76	52		-	4 5	59	45	309
0	18	0 1	90 47	100 28	0	1	13	0	68 39	56 59	270 260			2 3	65 25	75 33	19 253	3	3	0 1	129	149 69	90 187
		34	45	49	180 180			2	32	19 50	200			4	71 29	61 30	190 219			23	160 55	164 53	342 4
0	19	į	50	68	270			4 E	76	68	33	2	9	Ó	50	56	0			45	98 57	82 48	194 22
0 :	20	õ	48	61	180	1	14	0 0	41	15	9 0			2	166	157	275	3	4	õ	57	44	90

McPhail and Sim: TABLE 5 (Continued)

1	i k	÷ 1	F_{o}	Fc	α	,	h k	ŀ	F_{o}	Fc	α	h	k	l	F_{o}	F_c	α	1	k k	l	Fo	Fc	α
		1 2 3 4	108 139 73 113	97 153 64 101	326 101 102 271	2	3 22 3 24	1 2 4 1	45 <i>3</i> 2 21 31	48 42 17 21	292 106 205 294	4	14	0 1 2 3	77 46 22 44	83 54 33 41	0 227 213 359	5	9	3450	29 35 30 55	24 35 22 22	279 263 44 90
3	5	5 0 1 2	17 31 125 147	20 40 99	219 270 15	4	0	2 0 1 2	43 146 117 143	19 140 107	6 0 90	4	15	450	29 25 64	18 39 92	88 106 35	-		123	37 107 67	50 112 58	342 135 324
_		-3 4 5	32 88 73	38 74 49	245 134 166			345	105 76 84	64 68 55	270 270 270			245	38 48 22	27 66 19	85 308 65	5	10	4 5 0 1	44 40 57	4) 58 32 60	157 90 265
3	6	123	57 208 51 14	46 214 59 11	270 269 126 330	4	- 1	0 1 2 3	156 27 125 76	124 23 122 57	0 298 88 338	4	16	0123	39 43 47 30	40 43 58 50	0 104 126 258			2345	48 50 60	63 60 73	295 129 99
3	7	450	66 68 35	66 68 42	112 56 270	4	2	450	139 27 215	106 20 217	224 263 0	4	17	4 5 1	19 26 41	13 11 26	94 79 205	5	11	012	75 90 112	59 114 107	270 209 196
		1234	111 79 107 65	105 83 108 63	129 170 19 188			1 2 3 4	22 77 75 51	61 66 47	261 183 305	4	18 [.]	2340	22 28 47 37	24 23 49 43	73 0 237 0	5	12	3450	39 45 26 120	60 58 21 145	8 25 14 90
3	8	501	60 72 88	54 64 58	188 270 332	4	3	5012	48 99 71 28	43 64 87	89 180 241 200			1234	40 45 29	45 45 19	358 241 186	-		1 2 3	53 46 27	57 48 42	162 260 25
		2 3 4 5	113 22 22	112 23 23	76 81 280			345	144 60 84	142 50 71	130 272 306	4	19	40 1 3	50 48 34 26	49 67 20 28	0 231 92	5	13	5 0 1 2	24 25 32 25	5 41 15	90 333 77
3	9	0 1 2 3	66 101 66 109	66 98 48 125	90 220 57 347	4	4	0 1 2 3	43 163 119 34	46 192 101 29	0 325 105 164	4	20	4 1 2 4	21 61 31 29	20 37 40 32	262 358 59 225	5	14	3450	40 26 25	41 24 25 71	158 316 247
3	10	450	43 51 154	46 40 161	323 155 90	4	5	4 5 0	33 36 75	36 27 33	344 5 0	4	21	0230	33 34 27	42 24 33	180 213 73)	17	1 2 3	49 52 49	43 54 70	129 294 279
		1 2 3 4	109 18 24	99 91 11 42	275 107 280			234	64 103 120	53 99 101	185 55 37	4 4 4	22 25 26	1 1 1	4 <i>5</i> 37 31 34	27 31 11 28	180 343 189 184	5	15	4 1 2 3	19 37 53 69	18 46 57 87	15 338 204 183
3	11	5 0 1 2	32 30 46 21	30 27 72 23	179 270 9 156	4	6	5012	78 161 98 64	59 146 124 52	250 180 34 21	5	0	1235	310 86 73	239 96 68	90 180 90 270	5	16	4501	19 26 40	24 31 61	322 26 270
-	•••	345	31 67 22	32 79 31	114 9 171		~	345	73 47 94	77 55 62	199 228 274	5	1	1012	19 78 149	0 64 128	92 113 343	5	17	230	17 24 42	26 16 16	204 239 270
כ	16	1 2 3	49 18 89 28	40 18 95 36	201 261 326	4	1	123	37 62 16	35 72 17	303 298 200	5	2	24 50	24 57 97 58	45 56 91 38	130 130 350 90	5	18	2 4 1 2	29 32 39 56	32 32 41 51	250 155 92 115
3	13	4 0 1 2	33 53 24 106	54 34 19	101 270 99 182	4	8	4501	111 28 79 85	108 39 95 89	134 272 180 280			1234	49 75 112 47	70 69 108 48	118 100 261 319	5	19	4 0 2	29 29 27	31 14 48	255 90 23
-7		3450	45 39 41	40 48 27	127 22 317			234	115 69 34	124 81 35	324 101 217	5	3	501	45 168 164	48 149 163	15 90 16	5	20	10 2 3	29 37 22	44 42 27	270 84 237
\$	14	123	28 100 78 28	26 116 83 19	90 85 283 182	4	9	2012	41 62 70 55	22 79 43 41 :	105 180 153 278			2345	75 138 76 75	82 119 81 56	525 196 219 157	5 5	21 22	4 2 0 1	21 24 37 37	12 16 30 32	7 325 270 283
3	15	5123	33 35 25	8 29 37 30	98 286 14	4	10	3450	55 44 32 72	61 : 55 42 93	212 63 48 180	5	4	0123	231 77 134 63	263 96 132	270 312 86 159	5 6	23 0	300	31 39 226	34 42 262	104 270 0
3	16	1.001	47 21 81	58 25 73	15 90 88		~	123	114 33 67	123 62 77	156 54 10	5	5	1450	58 13 92	57 18 72	88 212 270			1235	87 111 37	90 71 53	180 90 90
3	17	2 4 0 1	45 33 30 25	65 44 12 43	270 247 270 333	4	11	4012	40 90 116 19	116 119 24	120 180 7 230			1234	207 45 101 36	44 90 47	188 225 346 163	6	1	0123	80 73 36 59	62 85 48 59	180 232 161 95
3	18	2 3 4 0	28 46 31 79	27 57 34 104	338 191 146 270	4	12	3450	57 16 61 32	73 25 72 18	308 66 127 180	5	6	5012	20 81 50 72	21 66 29 68	,5 270 308 132	6	2	4 5 0 1	55 45 44 71	63 37 21 67	310 32 0 53
		1 2 3	35	38 43 31 13	88 110 302 90			1234	49 56 17 17	52 61 22 7	167 253 334 335	5	7	3501	58 20 50	63 28 45 76	70 339 270			234	58 161 47	48 139 42	97 209 330
3	19	-034 0	28 26 25	28 17 28	90 161 216 270	4	13	5012	24 78 61	29 48 80	287 0 173			23,44	156 33 37	155 61. 48	4 38 155	6	3	20121	109 52 140	98 54 110	28 109
2	~ບ	24	27 21	34 19	69 315			4345	41 41 70	40 2	253 185	5	8	2010	54 154	61 169	90 279 279	~		3 4 5	47 69	94 45 60	247 248
3	21	2	•04	68	4			2	22	42	20			2	84	81	\$ \$2	6	4	0	62	56	180

1672

									TA	BLI	e 5	(Con	tinı	ied))								
h	k	l	Ĩo	Fe	·α	10	: k	ŀ	Fo	Fc	α	h	k	l	Fo	Fo	α	h	k	l	Fo	Fc	α
		1234	134 105 22 55	1€1 88 25 50	355 230 23 284			1234	77 68 99 59	69 67 104 55	290 314 228 196	7 8	0 21	2 1 0 1	57 34 64 26	59 36 49	124 112 180 269	8	18	34121	26 21 46 37	31 32 48 34	17 295 18 140
6	5	20123	93 60 70 56	101 54 70	254 0 258 249 150	7	2	20123	53 120 126 65	71 128 132 75	270 39 160 223	8	ı	23401	29 99 36 74	30 87 64 88	270 0 142	8 8 9	20 21 0	4131	25 34 22 63	21 28 19 73	296 314 89 90
6	6	45012	32 39 34 29	31 49 2 32	70 295 180 279	7	3	45012	50 33 82 33	42 29 57 41	28 188 270 66	0	2	23450	50 38 22 55	+2 33 32 60	274 291 285	9	ı	23412	124 47 24 86	54 23 86	180 270 0 40
e e	6	43450	75 86 15	79 79 18	139 195 107	7	4	4 5 0	91 15 34	92 26 47	125 37 270	0	٤	1345	98 15 54	125 25 49	6 319 195	0	2	23450	76 38 24	90 37 34	156 136 338 270
U	I	1234	89 90 30	91 87 61	305 259 135			123.45	96 28 42 61	114 35 38 76	98 77 242 355	8	3	0125	59 17 113 29	65 12 108 28	261 269 87	9	٢	1 2 4 5	89 31 29 21	101 21 38 27	111 57 39 358
E	3	0123	133 39 88 15	161 53 84 18	180 59 349 123	7	5	0123	90 107 29 33	93 96 33 41	90 118 44 63	8	4	4 50 1	32 16 57 35	25 18 20 8	278 234 0 114	9	3	0123	52 44 48 27	62 22 59 26	90 136 345 285
6	2	4 5 0 1 2	155650	17 64 69 68	350 276 0 47 50	7	6	50 1 2	68 31 77 72	77 33 90 103 88	2233 233 270 278	в	5	23450	19 69 16 30	48 98 23 30	126 166 272 314	9	4	40123	40 24 86 31 75	45 39 90 47 70	252 270 344 78 154
6	10	3401	25 45 33	34 66 53 33	282 113 180 159	7	7	34 50	27 25 19 32	29 14 22 30	195 326 67 270	Ũ	,	1 2 3 4	95 117 68 29	99 103 74 25	292 109 95 94	9	5	4501	35 17 58 22	41 15 81 43	264 82 270 51
6	11	2340	46 62 34 37	52 66 37 29	299 28 86 180			1234	47 14 97 35	61 20 107 20	289 81 298 151	8	6	50127	16 90 47 50	14 125 59	267 180 335 9	9	6	23401	96 52 33 43	85 43 50 54	16 293 159 270
		12345	50 52 57 21 30	64 63 32	286 237 134	7	8	1 2 3 4	84 36 68 29	94 42 74 28	199 199 130 190	8	7	24 50 1	34 24 35 68	33 30 21	323 175 80	q	7	2450	42 18 30	35 17 42 4	137 173 34 270
б С	12 13	1240	99 35 22 57	103 43 31 55	179 87 150 180	7 7	9 9	5023	20 102 48 71	14 106 41 87	228 270 76 40			2345	66 24 40 34	66 35 51 45	260 239 86 275	-	•	1 2 3 4	56 16 36 18	47 18 50 14	129 120 27 131
6	14	24501	39 35 •31 •40	37 40 47 31	63 281 100 0	7	10	4 0 1 2 3	49 106 37 43 48	40 109 55 60	90 198 326 19	8	8	01234	26 40 54 37	17 58 51 28	180 352 59	9 9	8 8	50124	30 45 23 79	30 18 19 83	165 270 233 345
С	15	12340	50 50 30 34	55 37 42 28	201 317 59	7	<u>,</u> 11	200 24	24 112 46 26	22 92 39 41	24 90 188 306	8	9	5012	21 25 53 46	29 11 · 64 63	233 180 331 270	9	9	0 1 2 4	42 58 40 35	14 65 44 36	270 238 110 288
~		12340	22 37 34 24	29 50 55 22	100 72 308 245	7	12	50240	35 35 75 19	36 83 23	177 90 304 73	8	10	4501	25 17 54 89	20 32 54 101	70 116 180 191	9	10	0 1 2 4	73 57 26 30	76 58 29 33	90 308 256 240
5	10	01245	23 31 20	74 33 24 35	346 167 224	1	1)	1245	60 33 27 29	68 38 34 32	281 164 19 43	8	11	4501	29 18 28 . 28	28 24 14	180 180	9 9	12	4 5 1 2 2	23 63 25 42	35 68 39	179 197 265 203
6	17	0123	27 33 23 21	22 44 16 18	180 200 293 61	7	14	0124	43 59 42 24	52 60 54 17	90 99 183 203			2345	31 44 35 29	45 37 32 44	243 243 98 72	9	14 15	3 4 1 1	32 28 33 40	37 34 59 48	100 330 85 255
6	18	4023	35 35 27 30	33 45 30 34	252 0 105 205	7	15	D0 2 3 4	18 37 22 47	25 7 28 51	207 90 265 146	8 8	12 13	03401	44 61 27 84	26 72 37 84	180 2 1 7 53 180	9	16	24120	19 21 32 31	15 8 43 27	267 191 46 182
6	19	4 0 1 2 3	21 31 25 36 34	19 27 21 42 33	262 114 59	7	16	1234	33 18 29 20	40 30 39 25	133 305 288 24	8	14	12340	21 42 44 56	25 46 41 75	5 16 5 279 1 256 5 0	9	18	1201	4 (33 24 43 33	41 22 43 41	27 264 270 174
6 6 7	20 21 0	4131	21 33 22 34	28 44 17 65	333 23 49 90	7 7	17 18	0340	51 30 21 29	58 30 41 40	90 212 229 270	8	15	1 2 4 0	26 42 20 33	24 30 20	170 209 139 5 0	9 10) 19) 0	2 1 4 0	20 30 21 44	23 40 13 82	84 121 182 0
•		2 3⊿	72 26 25	73 46 35	270 0	7	19	242	27 21 28	32 4 35	79 325 354	8	16	223	26 19 50	15 28 57	5 110 3 193 7 231			1 2 3	70 24 25	78 28 4 7	90 180 270
7	1	50	15 35	رر و 55	90 90	7	20	4 0	29 32	36 22	156 270	8	17	4 2	21 30	24	339 85	10) 1	4 0	34 83	32 85	180 0

The Structure of Caracurine-II

TABLE 5 (Continued)

h	k	l	F_{o}	F_c	α	h	k	l	F_{o}	F_{c}	α	l	k	!	F_{θ}	F_c	α	h	k	l	F_{o}	F_c	α
		1 2 3	37 31 43 31	37 30 43	290 184 30 222	10	13	4 0 2	20 37 30	27 39 36	90 180 66	11	12	2502	23 19 78 19	29 20 100 7	148 9 90 18	12 12	15 16	2222	25 20 29	21 19 38	167 116 229 270
10	2	70 1 2	32 49 62	10 55 60	180 256 251	10	14	t023	38 23 21	17 29 24	180 219 14	11	13	0234	31 19 43	15 9 42	270 239 149	13	1	312	49 33 37	42 33 39	270 319 229
10	3	2 4 0 1	44 18 23 70	29 28 14 84	149 305 180 183	10 10	15 16	4030	25 25 15 26	22 10 20 38	29 180 198 0	11 11	15 16	4020	26 42 28	28 47 32	90 236 270	13 13	2 3	4 1 3	20 68 41 21	22 67 45 24	505 59 128 27
10	4	2 3 1 2	25 25 9 4 66	28 24 86 59	148 118 349 100	10 10	1.7 18	1 2 1 2	26 25 26 20	13 10 34 27	272 2 85 179	12	0	1023	40 78 28 34	52 84 4 24	09 0 180 90	13	4	4 1 2 3	20 31 19 21	13 38 15 17	150 160 89 183
10	5	3 5 0 1	42 22 26 35	31 29 12 41	262 157 0 27	11 11	0 1	1 0 2 3	65 38 65 19	63 62 69 23	90 90 338 248	12	1	4 5 1 4	20 26 34 28	16 50 50 34	90 164 317	13 13	5 6	1 2 4 0	31 33 29 37	37 39 30 39	59 6 244 270
10	5	2345	28 37 37 33	38 31 46 47	218 12 20 257	11	2	4 5 1 2	19 18 27 57	10 34 38 56	331 17 48 118	12 12	2 3	1 2 3 0	36 35 42 29	42 48 35 36	68 107 234 0	13	7	1302	31 21 32 41	32 26 29 48	302 216 270 170
10	6	0123	44 29 36 39	0 48 39 43	180 36 3 227	11	2.3	3 4 5 1	52 23 18 68	·63 32 20 64	218 289 72 62	12	4	1230	37 18 57 29	25 17 66 24	312 114 33 180	13 13	8 9	4302	33 48 41 20	20 51 39 33	92 100 270 67
10	7	4 5 0 1	44 22 83 36	58 42 100	219 265 0 312	11	4	3450	57 19 29 72	66 25 27	180 172 210 270	12 12	4	1 2 5 0	32 31 23 53	48 33 24 72	15 284 156 0	13	10 12	4130	21 25 22	15 26 18	0 197 305 298
		1234	26 27 40	27 27 50	299 150 123		т	1 2 4	25 27 23	.28 12 23	215 46 119	.10	5	1231	35 28 32	29 34 33	182 224 180 267	13 14	15 1	201	41 32 35	38 44 38	305 0 128
10	8	2012	20 74 33 38	104 51 44	180 228 326	11	5	0 1 4	18 33 34	12 38 45	270 141 226	12	7	231	29 41 23	46 34 31	67 93 324	14 14	2 4	2 1 1 2	27 40 32 36	27 17 21 <i>3</i> 8	100 29 1 50
10	9	3 4 0 1	58 19 34 18	73 24 49 25	107 34 180 59	iı	6	5 1 3 4	26 52 52 20	27 49 37 30	38 99 233	12	8	4 1 2 3	25 26 26	33 36 21	121 3 187	14 14 14	5 6 8	3 3 1 1	26 27 46 26	29 27 18 21	191 82 257 283
10	10	2423	27 19 43 47	32 22 46 50	146 13 52 17	11 11	7 8	5 2 4 1	18 51 39 65	27 62 33 73	295 28 82 262	12	9	4 5 1 3	20 26 31 21	20 42 30 10	38 286 343 354	14 14 15	9 10 0	2 1 2 1	35 26 31 33	47 33 31 31	261 194 180 125
10	11	4 0 1 2	20 28 56 25	18 38 50 40	206 180 35 282	11	9	3523	35 19 48 32	29 18 55 31	306 106 134 53	12 12	10 11	4 2 3 0	21 . 33 21 37	26 41 33 11	88 303 27 0	15 15 15	2354	2007	20 45 39	18 53 52	355 90 270
10	10	3450	25 20 19	29 13 19	299 178 88	11	10	4504	20 23 29	17 37 14	166 188 270	12	12	1342	35 30 25	30 32 26 32	123 209 183 98	15 15 16	790	221	25 32 34	13 38 27	72 102 90
TO	15	123	25 30 37 21	40 41 46 23	131 257 277	11	11	4 5 0 1	25 19 24 39	27 19 22 45	309 90 241	12 12 12	13 14	4 0 1	25 37 26	25 44 24	106 180 160	16 16 16	1 4 6	1 2 2	34 25 20	35 7 16	228 60 28

The thirty-six light atoms were included as carbon atoms in the calculation of a second set of structure amplitudes and phase angles. The value of R fell to 32.8%.

In the three-dimensional electron-density distribution derived from the improved phases the remaining carbon and oxygen atoms (apart from C-18) were located. The positions assigned to carbon atoms 11 and 12 appeared to be very approximate and these atoms were omitted from the subsequent structure-factor calculation. This yielded a value of R of 31.2%.

A third electron-density distribution was then calculated and improved co-ordinates obtained for all the atoms. On calculating a fourth set of structure factors the value of R decreased to 30.1%.

Three further rounds of structure-factor and Fourier calculations were carried out. Backshift corrections for termination of series were derived from F_c syntheses and individual isotropic temperature factors were assigned. The value of R was reduced to 24.9%.

We next assigned anisotropic temperature factors to the iodide ions by least-squares calculations and obtained improved co-ordinates and isotropic temperature factors for the carbon, oxygen, and nitrogen atoms from difference Fourier syntheses. Four cycles of this refinement lowered the value of R to 18.6%.

The refinement procedure was concluded by one round of least-squares adjustment of the

positional parameters of the light atoms. In view of the limited intensity data we did not feel justified in assigning anisotropic temperature factors to these atoms.

The final atomic co-ordinates, the isotropic temperature factors of the light atoms, and the anisotropic temperature factors of the iodide ions are listed in Table 1. The final values of $|F_0|$, $|F_c|$ and α are shown in Table 5; the final value of R is 18.1% over the 1285 independent reflexions. The theoretical atomic scattering factors used in all the structure-factor calculations were those of Berghuis *et al.*²¹ for carbon, nitrogen, and oxygen and the Thomas-Fermi values for iodine.²²

The standard deviations of the final atomic co-ordinates were derived from the least-squares residuals by application of the equation:

$$\sigma^2(x_i) = \sum_j w_j (\Delta F_j)^2 / [(n-s) \sum_j w_j (\partial F_j / \partial x_i)^2].$$

The individual results have been listed by McPhail.²³

The extensive calculations were performed on the Glasgow University DEUCE computer with programmes devised by Dr. J. S. Rollett and Dr. J. G. Sime. We are grateful to Professor J. Monteath Robertson, F.R.S., for his encouragement and to Professor A. R. Battersby for supplies of caracurine-II dimethiodide and for helpful correspondence.

CHEMISTRY DEPARTMENT, THE UNIVERSITY, GLASGOW W.2.

[Present address (G. A. S.): DEPARTMENT OF CHEMISTRY, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS, U.S.A.] [Received, April 15th, 1964.]

²¹ Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
 ²² "Internationale Tabellen zur Bestimmung von Kristallstrukturen," Borntraeger, Berlin, 1935.
 Vol. II, p. 572.

²³ McPhail, Ph.D. Thesis, 1963, University of Glasgow.